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Abstract The movements of endogenous molecules during the magnetic resonance
acquisition influence the resulting signal. By exploiting the sensitivity of diffusion
on the signal, q-space MR has the ability to transform a set of diffusion-attenuated
signal values into a probability density function or propagator that characterizes the
diffusion process. Accurate estimation of the signal values and reconstruction of the
propagator demand sophisticated tools that are well-suited to these estimation and
reconstruction problems. In this work, a series representation of one-dimensional
q-space signals is presented in terms of a complete set of orthogonal Hermite func-
tions. The basis possesses many interesting properties relevant to q-space MR, such
as the ability to represent both the signal and its Fourier transform. Unlike the pre-
viously employed cumulant expansion, biexponential fit and similar methods, this
approach is linear and capable of reproducing complicated signal profiles, e.g., those
exhibiting diffraction peaks. The estimation of the coefficients is fast and accurate
while the representation lends itself to a direct reconstruction of ensemble average
propagators as well as calculation of useful descriptors of it, such as the return-to-
origin probability and its moments. In axially symmetric and isotropic geometries,
respectively, two- and three-dimensional propagators can be reconstructed from
one-dimensional q-space data. Useful relationships between the one- and higher-
dimensional propagators in such environments are derived.
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1 Introduction

Diffusion is a transport process characterized by the spontaneous and incessant
movements of particles. The characteristics of the diffusion process are determined
by the structure of the host matrix. As such, one can obtain information about the
domain in which diffusion is taking place by observing diffusion. One widespread
method for measuring diffusion involves the nuclear magnetic resonance (NMR or
MR) technique whose sensitivity to diffusion of spin-bearing molecules was real-
ized in its earliest days [9]. Later on, it was demonstrated that by incorporating
a pair of pulsed magnetic field gradients into conventional MR acquisitions, one
can observe diffusion in a convenient and controllable way [38]. This “pulsed-field-
gradient” (PFG) MR technique enabled the examination of numerous substances in
diverse areas. A spin that is moving between the application of the two diffusion
sensitization pulses of the PFG experiment suffers a net phase shift. A population of
randomly moving spins yield an incoherent phase profile, which leads to an attenu-
ation of the MR signal [17].

In diffusion MR, the net displacement vector R is a Fourier-conjugate to an ex-
perimentally controlled variable q = γδG/(2π), where γ is the gyromagnetic ratio,
δ is the duration of the diffusion gradient pulses and G is the diffusion gradient
vector, i.e. [37, 13],

P3D(R) =
∫

dqei2πq·R E(q) . (1)

Here, E(q) is the MR signal attenuation and, when δ is small, P3D(R) is an ensemble
average propagator indicating the probability for molecules to undergo a displace-
ment R in the interval between the two pulses. Therefore, P3D(R) can be estimated
from data obtained via sampling the three-dimensional “q-space” and then employ-
ing a Fourier transform scheme.

Frequently, because of experimental limitations or because the desired charac-
teristics of the specimen can be extracted from one-dimensional data, the entire
three-dimensional q-space is not sampled. Instead, a one-dimensional version of the
q-space acquisition is performed by keeping the direction of the diffusion gradients
fixed, and varying only their strength. If the x-axis is defined to be the direction of
the gradients, then a one-dimensional average propagator can be obtained from the
relationship

P(x) =
∫

dqei2πqx E(q) . (2)

By sensitizing the signal to the random motion of the molecules, the q-space
MR technique enables the study of microscopic compartments whose dimensions
cannot be resolved by conventional MR imaging and microscopy. Moreover, the
one-dimensional average propagator was shown to provide information about diffu-
sion, flow, restrictions to motion and even spatially dependent relaxation sinks [6].
In one application of diffusion acquisitions involving specimens with an ordered mi-
crostructure, the non-monotonic dependence of the q-space signal on q [4, 23] was
exploited to determine cell sizes. In another application, the q-space signal has been
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Fig. 1 MR signal attenuation expected from spins diffusing inside a rectangular pore of length
L is depicted via the continuous line on the left panel. Also shown on this panel are the curves
obtained from a biexponential fit (dashed line) and cumulant expansion with 10th, 30th and 60th

order approximations (dotted lines). The right panel shows the errors acquired in the biexponential
fit and the 60th order cumulant expansion. In these simulations, the biexponential fit was obtained
from 400 points uniformly covering a qL interval of [0,2.5]. The cumulant expansions are obtained
by analytically expanding the logarithm of the signal attenuation in a power series.

used to estimate scaling exponents that were related to the fractal dimension of dis-
ordered media [25]. Since the diffusion propagator is a probability density function,
among its descriptors are the moments of this density function. Another important
quantity is the probability for no net displacement, or more commonly referred to
as the return-to-origin probability [10]. These quantities are all indicators of tissue
microstructure, which could be altered by changes due to development, aging, and
disease.

Estimation of the derived quantities and reconstruction of the propagators can be
significantly improved if the signal decay can be expressed parametrically. For this
purpose, biexponential fitting [5, 31] and cumulant expansion [39, 18, 16, 11] tech-
niques have been applied to q-space data. However, both of these approaches are
limited in their ability of reproducing general E(q) profiles. For example, biexpo-
nential functions are monotonic by design, and as such, they can not possibly model
non-monotonic diffraction-like features. The cumulant expansion method is bound
to fail as well, because the signal minima are typically at or beyond the radius of
convergence [7, 14] for such expansions. Moreover, Pawula’s theorem guarantees
that the propagators reconstructed from a cumulant expansion terminated beyond
the Gaussian term will have unacceptable properties [32]. Figure 1 illustrates how
both of these methods fail in reproducing the exact MR signal attenuation from spins
diffusing inside a rectangular pore. Other parameterizations of the q-space signal in-
clude the assignment of a continuous spectrum of diffusivities [33, 36, 42] and fitting
stretched exponential [15, 2] or Rigaut-type asymptotic fractal expressions [15, 12]
to diffusion-attenuated MR data. These parametric representations also suffer from
the above-mentioned problems.

In this work, we propose expressing the one-dimensional q-space MR signal in
terms of the eigenfunctions of the quantum-mechanical simple harmonic oscillator
Hamiltonian, sometimes called the Hermite functions, which form a complete or-
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thogonal basis for the space of square integrable functions [21]. Because Fourier
transforms of these functions are Hermite functions themselves, our approach di-
rectly yields a propagator expressed in the same set of basis functions. Estimation
of probability distributions in a series of Hermite functions is well-studied in the
statistics literature [35] and such expansions were shown to possess powerful prop-
erties, such as rapid convergence in both real and Fourier spaces [41], which suit
problems of q-space signal analysis and average propagator estimation.

After introducing the basis and a numerical estimation method for its coefficients
in the next section, in Section 3, we evaluate the accuracy of the signal, propaga-
tor, moment and return-to-origin probability estimates. Several important and useful
relationships regarding the employed basis and geometries with axial symmetry or
isotropic environments are derived in the appendices.

2 Theory

We propose to express the diffusion-weighted MR signal as

S(q) =
N−1

∑
n=0

a′n φn(u,q) , (3)

with

φn(u,q) =
i−n
√

2n n!
e−2π2q2u2

Hn(2πuq) . (4)

Here Hn(x) is the nth order Hermite polynomial and u is a characteristic length to
be determined. The MR signal attenuation, defined to be E(q) = S(q)/S(0), can be
expressed in the same basis as

E(q) =
N−1

∑
n=0

an φn(u,q) , (5)

where

an =
a′n
S0

, (6)

with S0 = S(0) is the signal with no diffusion weighting, which can be estimated
from the coefficients a′n:

S0 =
N−1

∑
n=0

a′n φn(u,0) =
N−1

∑
n=0,2,4,...

(n−1)!!√
n!

a′n . (7)

Note that the φn functions are related to the eigenfunctions of the quantum-
mechanical simple harmonic oscillator Hamiltonian. It is well-known that these
functions form a complete orthogonal basis for the space of square-integrable func-
tions [21]. Figure 2 depicts first few of these functions. One important property of
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Fig. 2 First four functions
used in the expansion of the
MR signal profiles, S(q). Note
that the real and imaginary
parts of, respectively, the
even- and odd-order functions
are plotted as the other parts
are 0.

these functions is that their Fourier transforms are also Hermite functions; this en-
ables direct estimation of the propagator through the expression

P(x) =
N−1

∑
n=0

an ψn(u,x) , (8)

where

ψn(u,x) =
in√
2π u

φn

(
1

2πu
,x
)

=
1√

2n+1 π n!u
e−x2/(2u2) Hn(x/u) . (9)

Note that the functions ψn(u,x) are real-valued, which assures that the probabilities
will be real-valued when the an are real. This is a consequence of the phase conven-
tion we have employed in Eq. 4, which ensures that the real and imaginary parts of
the signal are even and odd, respectively. Moreover, Eq. 6 guarantees that the total
probability, i.e., the integral of the function P(x), will be unity. See Appendix 1 for
some additional properties of this basis.

2.1 Implementation

A set of a′n coefficients can be estimated by solving a set of linear equations. To
see this, we shall denote by S the M-dimensional vector of signal values. The mth
component of this vector is Sm = S(qm). Similarly, an M×N dimensional matrix,
Q, can be defined with components Qmn = φn(u,qm). The estimation problem is
reduced simply to a matrix equation S = Qa′, where the N-dimensional vector of
a′n coefficients is denoted as a′. In our implementation, this equation was solved
by computing the pseudoinverse of Q via singular value decomposition [34]. S0 is
computed subsequently using Eq. 7, which is inserted into Eq. 6 to determine the
coefficients an.
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It is important to note that a prior estimate of u is necessary for the above estima-
tion scheme. An adequate choice of u is necessary to obtain a reasonable approxi-
mation of the signal with few terms in the series. To this end, in our implementation,
we first estimated a maximum value for u from the first few points of S(q); in this
range of q-values, the signal was assumed to undergo Gaussian attenuation. Note
that when the signal is Gaussian, all coefficients except a0 vanish, and the signal
attenuation is given by E(q) = exp(−2π2q2u2). Starting with this estimate of u, we
gradually reduced it and at each value of u, we estimated the an coefficients using
the above scheme. Next, the signal attenuation values at the data points correspond-
ing to the particular u and an values were computed. These values shall be denoted
by Eest(u,q). The mean error defined by

ε(u) =
1
M

M

∑
i=1

(Eest(u,qi)−Edata(qi))
2 , (10)

was evaluated at each step, where Edata(qi) are the original data points. The search
for the optimal u was discontinued when a local minimum is achieved, or ε(u) fell
below 1×10−15. The last set of u and an values were used in subsequent analysis.

The average probability estimates can be computed for arbitrary values of x using
Eqs. 8-9. A return-to-yz-plane probability can be estimated either from the x = 0
point of P(x), or directly from Eqs. 26 with 22. The moments, 〈xm〉, can be computed
from the coefficients an using Eq. 25.

Many examples of media of interest to the MR community exhibit certain levels
of symmetry such as full isotropy or axial symmetry. For such specimens, one-
dimensional E(q) data is sufficient to reconstruct two- and three-dimensional aver-
age propagators in cases of axial symmetry and isotropy, respectively. It was shown
that such higher-dimensional propagators may be more meaningful than the one-
dimensional propagator [27]. For the case of axial symmetry, several general re-
lationships exist between the one- and two-dimensional propagators and their mo-
ments along with the expressions of the same quantities in terms of the an coeffi-
cients. These are derived in Appendix 3. Finally, Appendix 4 includes the deriva-
tions of similar relationships between one- and three-dimensional propagators for
isotropic geometries.

3 Results

We test our estimation and reconstruction scheme on six different signal attenuations
with analytically (i.e., exactly) available average probability profiles and moments.
Table 1 includes the percentage deviations of the zero-displacement probabilities
as well as even-order moments, estimated using the proposed series representation,
from the exact ground truth values for five of the geometries considered.

From its first days, PFG-MR techniques have been used to measure the bulk
diffusion coefficients of fluids. In this case, the signal as well as the average propa-
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gator is Gaussian. Similarly, when the sample has two distinct, non-exchanging, but
freely diffusing compartments, the signal and the average propagators can be writ-
ten in terms of sums of two Gaussians. It has been shown in numerous studies that
biexponential fits are quite satisfactory in modeling typical signal decays observed
from real tissue [20, 19]. Therefore, it is very important for a new reconstruction
scheme to fit mono- and bi-exponential decays. Figure 3 illustrates the performance
of the approach in mono- and bi-exponential signal attenuations where diffusion
coefficient was taken to be 1.0×10−3mm2/s in the mono-exponential case. In the
simulations of bi-exponential attenuation, the diffusion coefficients were taken to
be 1.5×10−3mm2/s and 2.5×10−4mm2/s with volume fractions of 0.6 and 0.4, re-
spectively. 33 sampling points were used, and a total of 12 even-ordered an coef-
ficients were kept in the series representation under the assumption that the prop-
agator is symmetric. The first row depicts the signal attenuation values (left) as
well as the deviation of the estimated signals from the ground truth (right). In the
case of mono-exponential attenuation, the scheme is exact up to numerical precision
while the performance is very accurate for biexponential decay as well. The figure
demonstrates that the scheme yields not only a good approximation within the sam-
pling window, but also a satisfactory extrapolation of the decay curve outside the
sampling window. The second, third and fourth rows of the figure illustrate the re-
sults obtained from the one-, two- and three-dimensional Fourier transforms of the
signal decay curves. The two-dimensional Fourier transform was performed under
the assumption that the signal originated from an axially symmetric environment,
while the three-dimensional Fourier transform assumed isotropy. In these cases,
one-dimensional q-space data is sufficient to reconstruct these higher-dimensional
propagators as detailed in Appendices 3 and 4. In all cases, the reconstructed prop-
agators are indistinguishable from the ground truth propagators.

To show the performance of the scheme for non-symmetric displacement proba-
bilities, we simulated a flowing fluid with the assumption that the molecules undergo
a net coherent displacement of 1.5u. In the presence of flow, the expected signal at-
tenuation is complex-valued and the odd-ordered coefficients of the series in Eq. 3
have to be retained. Our simulations started with 33 complex data points and N was
set to 23. The results shown in Figure 4 indicate that the errors in the signal decay as

Table 1 Percent (%) deviations of the estimated quantities from their exact values.

monoexponential biexponential rectangular pore cylindrical pore spherical pore
S0 3.0×10−14 7.0×10−7 4.2×10−12 4.3×10−12 1.9×10−13

P(0) 5.7×10−13 4.0×10−2 3.3 1.7×10−1 1.3×10−2

P2D(0) 4.0×10−12 2.2×10−1 — 4.3 —
P3D(0) 1.9×10−11 6.9×10−1 — — 5.7
〈x0〉 0 4.4×10−14 1.6×10−6 7.4×10−7 5.1×10−10

〈x2〉 4.1×10−13 4.3×10−5 5.1×10−5 2.4×10−5 1.0×10−7

〈x4〉 5.0×10−12 5.6×10−4 6.7×10−4 2.9×10−4 2.5×10−6

〈x6〉 3.4×10−11 3.9×10−3 6.7×10−3 3.0×10−3 3.8×10−5
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Fig. 3 Signal decay profiles, and one-, two- and three-dimensional propagators (left column, from
top to bottom) including both the ground truth and estimated curves from monoexponential as well
as biexponential diffusion. The right column shows the associated errors in the estimates. Note
that the two- and three-dimensional propagators are symmetrized around the 0 radius to make
comparisons with the one-dimensional propagator convenient.
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Fig. 4 Diffusion signal decay, and the corresponding average propagator (left column, from top
to bottom) from the simulations of Gaussian diffusion with flow. Note that the signal is complex-
valued due to flow, which yields a horizontal shift in the reconstructed average propagator. The
right column shows the associated errors in the estimates.

well as in the reconstructed average propagator is negligible and the peak of the dis-
placement probability shifted by the correct distance. Note that because of the lack
of symmetry, the zero-displacement probabilities are not meaningful for this set of
simulations. Additionally, unlike in the other geometries considered, the propagator
in the presence of flow has non-zero odd-ordered moments. Consequently, we did
not include the percentage deviations from this simulation in Table 1. The percent-
age deviation of the estimated S0 from the correct one was only 9.7× 10−14. The
percent deviations in the moments 〈x0〉 through 〈x7〉 were 4.4×10−14, 9.7×10−11,
3.5×10−9, 2.6×10−8, 3.6×10−7, 1.4×10−6, 1.1×10−5, 3.0×10−5.

Next we tackle three different scenarios of restricted diffusion. All of these sim-
ulations start with generating 33 data points and a total of 28 terms in the series
of Eq. 3 are kept. First, we simulate the signal attenuation from a one-dimensional
geometry in which the molecules are trapped between two parallel plates separated
from each other by a distance L. When the diffusion time is long, the diffraction-like
features are apparent, which leads to a challenging signal decay profile to estimate.
However, as shown in the first row of Figure 5, the proposed basis performs well not
only in the sampling window but also in the extrapolation region. Note the tremen-
dous improvement over the results obtained from biexponential fitting as well as
cumulant expansion as was illustrated in Figure 1. This improvement was achieved
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Fig. 5 Signal decay expected from a rectangular pore obtained via a single-PFG experiment and
the error in its SHORE estimate (top row). These images are the SHORE counterpart of the cu-
mulant expansion and biexponential fitting results presented in Figure 1. The associated average
propagator and the error in the reconstruction is shown in the middle row. The bottom row shows
the signal expected from a double-PFG experiment. Note that unlike in the case of the single-PFG
experiment, this plot is not logarithmic, which was necessary to accommodate negative portions of
the curve.

in spite of the fact that the analytical form of the cumulant expansion was used and
the biexponential fitting was performed on 400 data points. In contrast, our SHORE
simulation was numerical and used less than 10% of the data points within the same
window.

The corresponding propagator is given by a triangular function which is not dif-
ferentiable at three points. Although our basis is composed of smooth functions, the
approximation is quite successful for this piecewise smooth function (see the second
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Fig. 6 Signal decay curve, and two-dimensional axially-symmetric propagator (left column, from
top to bottom) for the cylindrical pore with radius r0. The associated errors are depicted in the right
column.

row of Figure 5). Finally, in the last row of the same figure, we consider the diffrac-
tion pattern predicted for a double-PFG experiment [23]. In such experiments, rather
than bouncing back from the horizontal axis, the signal decay is expected to cross the
horizontal axis and become negative at exactly half the q-value of the corresponding
single PFG experiment [23]. The satisfactory performance of the approach for this
more oscillatory signal attenuation profile suggests that the approximation can be
used to model signal decays obtained from multiple PFG sequences.

The second simulated restricted diffusion scenario is diffusion taking place inside
a cylinder of radius r0. The simulations of this axially symmetric geometry were
performed with identical parameters and the two-dimensional axially-symmetric
Fourier transform was computed both exactly and also from the an coefficients as
described in Appendix 3. The results are presented in Figure 6. Finally in Figure
7 we depict the results obtained from simulations of diffusion inside a sphere of
radius R0. For this geometry both the one- and three-dimensional average propa-
gators are included. Note that the two- and three-dimensional average propagators
obtained from the cylindrical and spherical pores resemble the triangular propagator
obtained from the rectangular pore. This observation suggests that the true displace-
ment profile is approximately linear in these geometries—a finding that cannot be
gleaned by studying the form of one-dimensional propagators.
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extrapolation
region

extrapolation
region

Fig. 7 Signal decay profile, and one-dimensional and three-dimensional isotropic propagator (left
column, from top to bottom) for the spherical pore with radius R0. The associated errors in the
estimates are included in the right column.

The results presented in Table 1 demonstrate the accuracy of the quantities that
are computed directly from the an coefficients using the relations derived in the
appendices. Note that zero-displacement probabilities are typically more difficult
to estimate because of their sensitivity to the signal values over the entire q-axis.
Therefore, extrapolations become more significant in these estimations. Similarly,
the higher order moments are related to the higher order derivatives of the signal
decay at the origin. Therefore, the accuracy in the estimates of the moments is an
indication of the accuracy in the derivatives of E(q) at q = 0. Finally, we would
like to note that because the one-dimensional moments are directly proportional to
the two- and three-dimensional radial moments, as implied by Eqs. 41 and 56, the



1D-SHORE for q-space MR 13

percent deviations in the radial moments are identical to those in one-dimensional
moments. Consequently, these deviations are not included in Table 1.

4 Discussion

We would like to point out that the two- and three-dimensional average propa-
gators were not qualitatively different from their one-dimensional counterparts in
the simulations of mono- and bi-exponential attenuations. However, in the case of
restricted diffusion, e.g., inside a spherical pore, as seen in Figure 7, the propa-
gator obtained from the three-dimensional Fourier transform resembles the one-
dimensional triangular propagator for diffusion inside a rectangular pore although
the one-dimensional propagator of the spherical pore is smoother and Gaussian-like.
This is an indication that the violation of the Gaussian phase approximation is more
severe in one-dimensional geometries, because in one-dimensional propagators of
higher-dimensional pores, displacements are projected onto one of the axes leading
to a smoothing effect in such environments. Moreover, since the propagator is the
autocorrelation function of the shape function, it is straightforward to prove that,
in closed pores, the zero-displacement probability is just the reciprocal of the pore
“volume.” As can be seen in Eqs. 29, 46, and 61, this was exactly the case for the
zero-displacement values of the one-, two- and three-dimensional propagators for
rectangular, cylindrical and spherical pores, respectively. The x = 0 values of the
one-dimensional propagators for cylindrical and spherical pores (see Eqs. 47 and
63) suggest that there may not be such a shape-independent relation between the
P(x = 0) value of a higher-dimensional geometry and the shape of the pore.

The technique we have presented here is linear because the estimated coeffi-
cients, a′n, are expressible as a linear combination of the signal values. In fact, to
estimate the coefficients of the series representation, we posed the problem as a ma-
trix equation. The scheme demands an a priori estimate of the characteristic length
u. This can be done using many different ways; the approach we have described in
the Theory section starts by fitting the small-q section of the E(q) data to a Gaus-
sian decay curve, i.e., E(q) ≈ e−2π2q2u2

, and gradually reducing the u-value until
the mean error, i.e., the average squared deviation of the signal attenuation esti-
mates from the original values, reaches a minimum or drops below a very small
value comparable to the machine precision. Note that the estimation of a maximum
value for u from the first few points of the signal profile is nonlinear, and because
it is performed on fewer data points, the estimates are prone to error. However, the
completeness of the employed basis, regardless of u, guarantees the convergence of
the series although a deviation in the estimated u-value from its ground-truth value
may affect the rate of this convergence. In our simulations, we observed that even
10% error in the estimation of u was tolerable and did not change the quality of the
results significantly.

As discussed above, the constant u is a characteristic length proportional to the
square root of the diffusion time. Because the basis is symmetric under the inter-
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change of u and q, the same formalism can be applied to data obtained by varying
the diffusion time while keeping the diffusion gradient strength fixed.

The analyses we have presented have focused entirely on one-dimensional data
and provides details of the 1D-SHORE framework introduced for the first time in
Ref. [26] . Although we presented results from reconstructions of two- and three-
dimensional propagators, these results were based on axially-symmetric or isotropic
geometries, respectively. In these geometries, having the q-space data along one
direction is tantamount to having it on the entire plane or within the entire three-
dimensional space making it possible to compute the higher-dimensional propa-
gators using one-dimensional transforms (see Eqs. 33 and 49). However, because
of the separation of variables of the higher-dimensional analog of the simple har-
monic oscillator Hamiltonian in Eq. 11, our scheme has a trivial extension to two-
and three-dimensional q-space signals even in the absence of axial symmetry or
isotropy as we showed in [28]. A similar approach was introduced in Ref. [1] that
uses Gauss-Laguerre functions. We envision that representing the MR signal atten-
uation analytically in a series of orthogonal functions will have many applications.
Most recently, the 1D-SHORE framework was shown to be useful in accurately esti-
mating the moments of the underlying compartment size distributions, which could
be employed to obtain new forms of MR image contrast [30].

5 Conclusion

We have introduced a new basis to represent one-dimensional q-space signal and
reconstruct the average propagators from it. The basis is well-known in quantum
mechanics, but some characteristics of the basis make it particularly relevant to and
useful for q-space MR. Among these is its capability to accommodate complex-
valued signals while ensuring a real and normalized average propagator. Addition-
ally, the Fourier transform of each component is readily available making it possible
to reconstruct the average propagators immediately. Similarly, useful descriptors of
the propagator such as return-to-origin probabilities and its moments can be com-
puted from the basis representation. On several simulations, the accuracy of the
estimations was assessed and we demonstrated that it successfully represents sig-
nal profiles even when the signal and the propagators have unusual forms such as
in the presence of diffraction-like features. Unlike the previously employed cumu-
lant expansion, multi-exponential fitting and similar approaches, the basis functions
are complete, orthogonal and the estimation/reconstruction scheme is linear with a
wider range of applicability.
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Appendix 1. Remarks on the basis functions

Note that the functions ψn(u,x), defined in Eq. 9 are the solutions to the eigenvalue
equation (

−u2 ∂ 2

∂x2 +
x2

u2

)
ψn(u,x) = λn ψn(u,x) , (11)

with eigenvalues λn = (2n+1). Taking the Fourier transform of both sides, it is easy
to show that the functions φn(u,q) are the solutions to the eigenvalue equation(

− 1
(2πu)2

∂ 2

∂q2 +(2πu)2 q2
)

φn(u,q) = λn φn(u,q) . (12)

Since Eqs. 11 and 12 are identical upon the transformations x −→ q and u −→
(2πu)−1, ψn and φn have the same form up to a multiplicative factor (see Eq. 9). In
fact, the operator on the left hand side of these eigenvalue equations is the Hamilto-
nian operator with a quadratic potential, which describes the simple harmonic oscil-
lator problem in quantum mechanics. However, our definitions of the eigenfunctions
are slightly different from their forms as commonly used in quantum mechanics.
Specifically, our basis is not normalized, but the scaling is such that when diffusion
is Gaussian, an = δn0, where δi j is the Kronecker delta.

Despite these minor differences from the basis used in quantum mechanics, our
basis functions still satisfy the relationships

Aψn(u,z) =
{

0 ,n = 0√
nψn−1(u,z) ,n≥ 1 (13)

and

Ãφn(u,q) =
{

0 ,n = 0√
nφn−1(u,q) ,n≥ 1 , (14)

where A and Ã are the “lowering operators” defined by

A =
1√
2

(
z
u
+u

d
dz

)
(15)

and
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Fig. 8 Transformation of the
indices n and m into k and l.
Note that N = 8 in this figure.

k=7
k=6

k=5
k=4

k=3
k=2

k=1

k=0

l=0

l=2

l=4

l=6

Ã =
i√
2

(
2πuq+

1
2πu

d
dq

)
. (16)

Writing the polynomials in the definitions of E(q) and P(x) in
power series

It is possible to show that the Hermite polynomials can be written as [8]

Hn(x) =
n

∑
m=0,2,4,...

(−1)m/2 2n−m n!
(n−m)!(m/2)!

xn−m . (17)

Inserting this expression into Eq. 5, the following power series expansion for the
signal decay is obtained

E(q) = e−2π2q2u2
N−1

∑
n=0

an

n

∑
m=0,2,4,...

i−n−m 2−m+n/2
√

n!
(n−m)!(m/2)!

(2πqu)n−m . (18)

The double summation in the above expression can be recast by using the transfor-
mations k = n−m (k = 0,1,2, . . . ,N−1) and l =m (l = 0,2, . . . ,N−k−1) as shown
in Fig. 8:

E(q) = e−2π2q2u2
N−1

∑
k=0

bNk(u)qk , (19)

where

bNk(u) =
i−k (2πu)k

k!

N−k−1

∑
l=0,2,...

√
2k−l (k+ l)!
(l/2)!

ak+l . (20)

Using the same approach, the propagator can be written as

P(x) = e−x2/(2u2)
N−1

∑
k=0

cNk(u)xk , (21)
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where

cNk(u) =
1√

2π uk+1 k!

N−k−1

∑
l=0,2,...

(−1)l/2

√
2k−l (k+ l)!
(l/2)!

ak+l . (22)

Moments of P(x) and P(0)

The m-th order moment of P(x) is defined to be

〈xm〉=
∫

∞

−∞

dxxm P(x) . (23)

The usual strategy to compute the moments of a propagator from its E(q) profile,
involves the power series expansion of the plane wave in the Fourier relationship
between the signal and the probability, i.e.,

E(q) =
∫

∞

−∞

dxe−i2πqx P(x)

= 1+
(−i2πq)

1!
〈x〉+ (−i2πq)2

2!
〈x2〉+ (−i2πq)3

3!
〈x3〉+ . . . (24)

Therefore, a power series representation of E(q) data, upon a term-by-term compar-
ison with Eq. 24 would yield the moments of P(x).

However, the moments can be computed directly using the Hermite function rep-
resentation of the E(q) profile as well. This can be done by inserting Eqs. 21-22 into
23 yielding

〈xm〉= um
N−1

∑
k=0,2,...

(k+m−1)!!
k!

N−k−1

∑
l=0,2,...

(−1)l/2

√
2k−l (k+ l)!
(l/2)!

ak+l , (25)

when m is even. Odd ordered moments can be computed using essentially the same
expression where the index k takes odd values, i.e., k = 1,3,5, . . ..

Note that P(0) can be evaluated conveniently by setting x = 0 in Eq. 21, i.e.,

P(0) = cN0(u) . (26)

Note that P(x = 0) is not a true return-to-origin probability, but, since P(x) is ob-
tained through a one-dimensional Fourier transform, it is the probability for the
molecules to return to the yz-plane—a consequence of the Fourier slice theorem.
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Appendix 2. The rectangular pore

When the spins are trapped between two infinite plates, one located at x = 0 and the
other at x = L, the expected signal intensity at long diffusion times is given by [40]

Erect(q) =
sin2(πqL)
(πqL)2 , (27)

where it is implied that the diffusion gradients are applied perpendicular to the infi-
nite plates. The corresponding average propagator is

Prect(x) =

{
L−|x|

L2 , |x| ≤ L
0 , |x|> L

. (28)

Obviously, the return-to-yz-plane probability is simply

Prect(0) =
1
L
. (29)

Finally, the even order moments of the propagator are given as

〈xm〉rect =
2Lm

(m+1)(m+2)
, (30)

while the odd order moments vanish.

Appendix 3. Axially symmetric geometries and the cylindrical
pore

General results

Many geometries of interest have an anisotropic structure with an oblate or prolate
shape, where the environment possesses a symmetry axis. In our treatment we shall
take the z-axis to be along this symmetry axis. In such an axially symmetric or trans-
versely isotropic process, the same signal attenuation profile is obtained when the
diffusion gradient is applied in any direction (which defines the x-axis in our treat-
ment) perpendicular to the symmetry axis. In this case, a two-dimensional isotropic
Fourier transform can be evaluated from one-dimensional q-space data, i.e.,

P2D(r) =
∫

∞

−∞

dqx

∫
∞

−∞

dqy ei2πq·r E(q) , (31)

where the two-dimensional vectors q and r reside on the xy-plane. The radial and
polar coordinates of these vectors shall be denoted to be (q,θq) and (r,θr), respec-
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tively. Inserting the Rayleigh expansion for two-dimensional plane waves,

ei2πq·r =
∞

∑
m=−∞

im Jm(2πqr)eim(θr−θq) , (32)

into Eq. 31, the two-dimensional isotropic propagator for axially symmetric envi-
ronments is obtained to be

P2D(r) = 2π

∫
∞

0
dqqJ0(2πqr)E(q) . (33)

The same analysis can be repeated for the inverse Fourier transform, yielding

E(q) = 2π

∫
∞

0
dr r J0(2πqr)P2D(r) . (34)

The one-dimensional average propagator, obtained from a one-dimensional Fourier
transform, is related to the two-dimensional propagator via the relation

P(x) =
∫

∞

−∞

dyP2D(x,y)

= 2
∫

∞

|x|
P2D(r)

r√
r2− x2

dr , (35)

which is a consequence of the Fourier slice theorem. Clearly, the above expression
is just the Abel transform [3] of P2D(r). Therefore, the inverse Abel transform of the
one-dimensional projection reveals the two-dimensional axially symmetric propa-
gator to be

P2D(r) =−
1
π

∫
∞

r

P′(x)√
x2− r2

dx . (36)

The return-to-yz-plane probability can be estimated from the two-dimensional
axially symmetric propagator:

P(x = 0) = 2
∫

∞

0
dr P2D(r) . (37)

On the other hand, a return-to-z-axis probability can be calculated by setting r = 0
in Eq. 33, i.e.,

P2D(0) = 2π

∫
∞

0
dqqE(q) . (38)

The radial moments of the two-dimensional axially symmetric propagator are
defined as

〈rm〉2D = 2π

∫
∞

0
dr rm+1 P2D(r) . (39)

Similar to what is done in Eq. 24, the Bessel function in Eq. 34 can be written as a
power series, yielding
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E(q) = 1− (2πq)2

22 〈r2〉2D +
(2πq)4

(2 ·4)2 〈r
4〉2D−

(2πq)6

(2 ·4 ·6)2 〈r
6〉2D + . . . . (40)

A term-by-term comparison of the series in Eqs. 24 and 40 suggests that the radial
moments are given in terms of the one-dimensional moments by the relationship

〈rm〉2D =
m!!

(m−1)!!
〈xm〉 . (41)

Note that this relationship holds only when m is even; axial symmetry implies that
odd order moments of the one-dimensional propagator, 〈xm〉, will vanish.

Estimates in terms of an coefficients

Inserting Eq. 19 into Eq. 33 yields [8]

P2D(r) =
N−1

∑
k=0

bNk(u)
Γ (k/2+1)

2k/2+1 πk+1 uk+2 1F1

(
k
2
+1, 1,− r2

2u2

)
, (42)

where 1F1(α,γ;z) is the confluent hypergeometric function of the first kind. Stan-
dard computational libraries do not include an implementation of these functions.
However, a simple and accurate implementation can be performed by exploiting the
recurrence relation [8]

α 1F1(α +1,γ;z) = (z+2α− γ)1F1(α,γ;z) + (γ−α)1F1(α−1,γ;z) . (43)

Since 1F1(α,γ;0) = 1, a return-to-z-axis probability can be computed simply by
summing up the factors before the confluent hypergeometric function in Eq. 42.
Note that the radial moments, 〈rm〉2D can be computed from an by using Eq. 25
along with Eq. 41.

The cylindrical pore

In this section we shall consider restricted diffusion within a cylinder of radius r0,
which is an example to an axially symmetric process . The MR signal attenuation is
given by [17]

Ecyl(q) =
(

J1(2πqr0)

πqr0

)2

. (44)

By inserting Eq. 44 into 33, the two-dimensional axially symmetric propagator can
be evaluated to be
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Pcyl
2D (r) =


4cos−1

(
r

2r0

)
− r

r0

√
4−
(

r
r0

)2

2π2r2
0

,r ≤ 2r0

0 ,r > 2r0

. (45)

It immediately follows that the return-to-z-axis probability is given by

Pcyl
2D (0) =

1
πr2

0
. (46)

Moreover, the return-to-yz-plane probability was calculated, by inserting Eq. 45 into
Eq. 37, to be

Pcyl(x = 0) =
16

3π2r0
. (47)

Finally, the radial moments are given by

〈rm〉cyl
2D =

2m+4 (m+1)!!
(m+2)(m+4)!!

rm
0 . (48)

Note that 〈xm〉 can be calculated by inserting this expression into Eq. 41.

Appendix 4. Isotropic geometries and the spherical pore

General results

Many specimens of interest in pulsed-field-gradient MR are isotropic. Even in the
presence of local anisotropy [29, 24, 22], the randomness in the shape and orienta-
tion of the pores would lead to isotropy due to the averaging of signals from indi-
vidual compartments. In such environments, having the q-space data with diffusion
gradients applied along a single direction is tantamount to having the data all across
the three-dimensional q-space. Therefore, it is possible to characterize the entire
average propagators and related parameters via one-dimensional sampling. In fact,
the resulting three-dimensional isotropic propagator can be computed through the
relationship

P3D(R) =
2
R

∫
∞

0
dqq sin(2πqR)E(q) , (49)

which is obtained by inserting the Rayleigh expansion of three-dimensional plane-
waves [31]

ei2πq·R = 4π

∞

∑
l=0

il jl(2πqR)
l

∑
m=−l

Ylm(R/R)Ylm(q/q)∗ (50)

into the 3D Fourier transform relationship between E(q) and P(R) in Eq. 1, where
q = |q|, R = |R| and q and R are three-dimensional vectors. The Fourier slice theo-
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rem enables to establish the relation between the three-dimensional isotropic prop-
agator and one-dimensional propagator:

P(x) =
∫

∞

−∞

dy
∫

∞

−∞

dzP3D(
√

x2 + y2 + z2)

= 2π

∫
∞

0
dρ ρ P3D(

√
ρ2 + x2)

= 2π

∫
∞

|x|
dRRP3D(R) . (51)

Here the first step involves the change of variables ρ2 = y2+z2. Similarly, the trans-
formation R2 = x2 +ρ2 was employed in the second step. Taking the derivative of
both sides with respect to x and subsequently employing the fundamental theorem
of calculus, one obtains

P3D(R) =
(
− 1

2πx
dP(x)

dx

)∣∣∣∣
x=R

. (52)

Eq. 51 implies that the return-to-yz-plane probability can be calculated using the
relationship

P(x = 0) = 2π

∫
∞

0
dRRP3D(R) . (53)

Note that Eq. 49 leaves the return-to-origin probability undetermined, which should
be calculated using the relationship

P3D(0) = 4π

∫
∞

0
dqq2 E(q) . (54)

The radial moments of the three-dimensional isotropic propagator are defined as

〈Rm〉3D = 4π

∫
∞

0
dRRm+2 P3D(R) . (55)

Inserting Eq. 52 into the above expression and performing integration by parts, it is
straightforward to show that the radial moments of the three-dimensional isotropic
propagator and the moments of the one-dimensional propagator are related through
the relationship

〈Rm〉3D = (m+1)〈xm〉 . (56)

Note that this relationship holds only when m is even. Odd order moments of the
one-dimensional propagator, 〈xm〉, vanish due to isotropy.
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Estimates in terms of an coefficients

By inserting the expansion of the one-dimensional propagator in Eq. 8 into Eq. 52
and differentiating by using the relationships in Eqs. 13 and 15, one can expand the
three-dimensional isotropic propagator as

P3D(R) =
N−1

∑
n=0

an ξn(u,R) , (57)

where

ξn(u,R) =


1

2πu2 ψ0(u,R) ,n = 0

1
2πu2 ψn(u,R)−

√ n
2

1
πuR ψn−1(u,R) ,n≥ 1

. (58)

Note that the return-to-origin probability can be estimated from the coefficients an
by setting R = 0 in the above expression. Finally, the radial moments, 〈Rm〉3D can
be computed from an by using Eq. 25 along with Eq. 56.

The spherical pore

Diffusion inside a spherical pore of radius R0, yields the following MR signal atten-
uation at long diffusion times [40]:

Esph(q) =
[

3
(2πqR0)2

(
sin(2πqR0)

2πqR0
− cos(2πqR0)

)]2

. (59)

By inserting Eq. 59 into 49, one can evaluate the three-dimensional isotropic
propagator to be

Psph
3D (R) =

{
3(2R0−R)2 (4R0+R)

64πR6
0

,R≤ 2R0

0 ,R > 2R0
. (60)

It immediately follows that the return-to-origin probability is given by

Psph
3D (0) =

3
4πR3

0
. (61)

The one-dimensional propagator can be obtained via a one-dimensional Fourier
transform of Esph(q) or by inserting Eq. 60 into Eq. 51. In either case, it is given by

Psph(x) =

{
3(2R0−|x|)3 (4R2

0+6R0|x|+x2)

160R6
0

, |x| ≤ 2R0

0 , |x|> 2R0

, (62)

which implies that the return-to-yz-plane probability is given by
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Psph(x = 0) =
3

5R0
. (63)

Since isotropic geometries are also axially symmetric, the expressions derived in
Appendix 3 apply also to this appendix. For brevity, we shall include only the result
for the return to long axis probability predicted for spherical pores:

Psph
2D (0) =

9
8πR2

0
. (64)

Finally, the radial moments are given by

〈Rm〉sph
3D =

9 · 2m+3

m3 +13m2 +54m+72
Rm

0 . (65)

Note that 〈xm〉 can be calculated using this expression along with Eq. 56.
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22. Özarslan, E.: Compartment shape anisotropy (CSA) revealed by double pulsed field gra-

dient MR. J Magn Reson 199(1), 56–67 (2009). DOI 10.1016/j.jmr.2009.04.002. URL
http://dx.doi.org/10.1016/j.jmr.2009.04.002
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30. Özarslan, E., Shemesh, N., Koay, C.G., Cohen, Y., Basser, P.J.: Nuclear magnetic resonance
characterization of general compartment size distributions. New J Phys 13, 015,010 (2011)
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